THEORETICAL & PHYSICAL CHEMISTRY INSTITUTE
 
Condensed Matter Theory
Staff
Publications
External Funding
   
   
   


Condensed Matter Theory

The statistical physics of DNA: nonlinearity, cooperativity, flexibility

N. Theodorakopoulos

Background: Hierarchy of interactions leads to aelf-organizinglevels of structure

The complex 3-dimensional structure of biological macromolecules reflects a hierarchy of underlying physical interactions. Covalent bonding guarantees the stability and local geometry of the primary structure, i.e. the sequence of aminoacids in proteins or bases in DNA. Weaker (hydrogen bonding, hydrophobic and base stacking) interactions, whose energies are roughly comparable with the thermal content of the surroundings, are ultimately responsible for the formation of higher-level structures associated with biological function.

Selected topics in theoretical biophysics (Lecture Notes, Konstanz, 2001)
Phase transitions in homogeneous biopolymers: basic concepts and methods (a tutorial review)

Mesoscopic modeling & cooperativity

Mesoscopic modeling adopts a minimalist approach. It foregoes any attempt to describe the details of structure and/or dynamics and concentrates instead on those gross features of a biological macromolecule which characterize collective behavior. Such cooperativity manifests itself in macroscopic phenomena, e.g. protein (or DNA) denaturation.
An example of this minimalist approach is the nonlinear lattice dynamics model of DNA proposed by Peyrard, Bishop and Dauxois (PBD). In its simplest version the model looks at a base pair as a single, continuous degree of freedom. Thermodynamic behavior is governed by the interplay between binding forces. The model describes successfully the phenomena of thermal and mechanical denaturation of long DNA chains (commonly known as melting and unzipping, respectively).

Order of the phase transition in models of DNA thermal denaturation, N. Theodorakopoulos, T. Dauxois and M. Peyrard, Phys. Rev. Lett. 85, 6 (2000), cond-mat/0004487

Thermodynamic instabilities in one dimensional particle lattices: a finite-size scaling approach, N. Theodorakopoulos, Phys. Rev. E 68, 026109 (2003); cond-mat/0306315

Nonlinear structures and thermodynamic instabilities in a one-dimensional lattice system, N. Theodorakopoulos, M. Peyrard and R.S. MacKay, Phys. Rev. Lett. 93, 258101 (2004), cond-mat/0411188

Self-assembly: DNA hairpins

Single strands of DNA with complementary ends will spontaneously self-assemble to form "hairpin" structures. Hairpins provide a unique experimental (and theoretical) laboratory to test DNA collective dynamics.

Modeling DNA beacons at the mesoscopic scale, J. Errami, M. Peyrard and N. Theodorakopoulos, Eur. Phys. J. E 23, 397 (2007); arXiv:0706.2458

 

DNA bubbles

The double helix is in reality an open, fluctuating structure. Local openings of base pairs are instrumental in initiating the process of transcription. Understanding DNA bubble statistics and dynamics is an important task of biological physics.

A detailed analysis along the lines of the PBD model reveals that it takes a large amount of energy to open the first few sites of a bubble; once the "initiation barrier" has been crossed, bubble growth proceeds with a very low energetic cost.


 

 

Melting profiles

With an improved set of global parameters and a novel, efficient computational procedure, it is possible to use the PBD model in order to predict the melting profile of any given long, genomic sequence.

Melting of genomic DNA: predictive modeling by nonlinear lattice dynamics,
N. Theodorakopoulos, Phys. Rev. E 82, 021905 (2010); arXiv:1007.2728


 

DNA denaturation bubbles at criticality, N. Theodorakopoulos, Phys. Rev. E 77, 031919 (2008); arXiv:0802.2194

The thermal denaturation of DNA as observed at the ILL (Grenoble) using neutron scattering techniques

Heating up DNA .

The thermal denaturation of DNA studied with neutron scattering, A. Wildes, N. Theodorakopoulos, J. Valle-Orero, S. Cuesta-Lopez, J-L Garden and M. Peyrard, Phys. Rev. Lett. 106, 048101 (2011); arXiv:1101.1797

 



 

 


DNA "breathing" flexibility


Understanding the temperature (and sequence) dependence of DNA bending stiffness - an essential property in key biological processes - is now possible in terms of a combined PBD and Kratky-Porod (KP) model.


Base pair openings and temperature dependence of DNA flexibility, N. Theodorakopoulos and M. Peyrard, Phys. Rev. Lett. 108, 078104 (2012)

Double, Double . Bubble ("Physics" synopsis)

 

 

Contact
N. Theodorakopoulos
Theoretical and Physical Chemistry Institute,
National Hellenic Research Foundation,
48 Vassileos Constantinou Ave.,
Athens 11635, Greece

Tel.: +30 210 7273797
FAX: +30 210 7273794
Email: ntheodor

 

 

 

 

 

 

National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Ave., 11635 Athens, Greece, Tel. +302107273700, Fax. +302107246618